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Abstract We consider simple examples of self-organized mitical systems on onedimensional 
superlattices without local particle conservation laws. The set of all recurrence states are also 
found in these examples using a method similar to the buming algorithm. 

1. Introduction 

In 1987, Bak et ai proposed an interesting idea called self-organized criticality, suggesting 
that many physical systems could evolve under their own dynamics without any fine-tuning 
parameters to states without any characteristic t h e  and length scales [I]. They illustrated 
the idea using a simple cellular automaton model. Later on, their automaton model was 
proved to be commutative in the sense that the order of 'particle addition operations' does 
not affect the outcome of the final state [Z]. Now, this model is widely known as the 
Abelian sandpile model (ASM). In addition to the cellular automaton models, various kinds 
of continuous and lattice-continuous models have shown to exhibit self-organized criticality. 

In particular, the self-organized critical model of dissipative transport using a stochastic 
partial differential equation [3] has recently received much attention. This model proves 
that the existence of a local (particle) conservation law is not a necessary condition for the 
exhibition of self-organized criticality. Further discussions on the importance of particle 
conservation law can be found elsewhere 141. Furthermore, the existence of a local particle 
conservation law is also not an essential feature for cellular automaton models (i.e. models 
on finite grid points in which each grid point allows only a finite number of states). The 
well known forest fire model is an example of this kind [5].  

In this paper, we study two new examples of Abelian sandpile models on o n e  
dimensional superlattices-the simplest possible kind of self-organized critical model 
without local particle conservation laws. The examples we provide here can be easily 
generalized to higher dimensions, although exact calculation of the scaling exponents and 
the recurrence phasespace configurations is much more difficult. Studies of similar one- 
dimensional models can be found elsewhere 161. A useful method, inspired by the idea 
of the burning algorithm [7], for finding the recurrence phase space which constitutes an 
important step in showing the criticality of our model, is also introduced. This method 
works well for systems of low spatial dimensions. 
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2. Example 1 

Consider a collection of 2N sites labelled from 1 to 2 N  and we associate an integer hi 
called the local height with each site. Using the same rules for the Abelian sandpile, sites 
with local height greater than 0 are said to be unstable and particle redistribution occurs 
as follows. (i) For any odd-numbered site Z i f l ,  two particles will be lost in the next 
time-step. Each of its two nearest neighbours, i.e. sites 2i and 2if2, receives two particles 
in the next time-step. Clearly two extra particles are created in the particle redistribution 
(or toppling) process. (ii) For any even-numbered site 2i, four particles will be lost in the 
next time-step. Each of its two nearest neighbours, i.e. sites 2i - 1 and 2i + 1, receives 
a single particle. Thus, two particles are dissipated in the process. The odd and even- 
numbered sites are respectively called creative and dissipative. Open boundary conditions 
(i.e. particles are allowed to flow out of the system from both ends) are used. Therefore, 
the toppling matrix [2] of the system is given by 

2 -2 
-1 4 -1 

-2 2 -2 
-1 4 -1 

. . . . . . . . . 
. . . . . . . . . 

where the superscript ( 2 N )  denotes the total number of sites in the system, and hence the 
size of the matrix. Clearly we have constructed a one-dimensional superlattice model with 
equal number of dissipative and creative sites. 

First we find the total number of recurrence states on the system which equals det A 
[2]. By some elementary row and column transformations, it is easy to show that 

det Aw) = 4det A(=-’) - 4det Aw4) 

det A(2N) = (2N + 1) 2N. 

(2) 

(3) 
Now we want to find all the (2N + 1)2N recurrence states of the system using an idea 

inspired by the burning algorithm 171. We represent system configurations by row vectors 
of length 2 N .  It has been shown that a system configuration (I = ((11, . . . , ( I Z N )  is in the 
set of all recurrence states S2 if and only if we can find an unstable state p = (,SI, . . . , &v) 
which topples to (I with all the sites topple at least once in the process [8,9]. Clearly, 

= olj + cj njAji for some nj E Z+. To test if a particular state (I is recurrence, we 
choose a set of ni E Z+ with ui = xj njAj; 2 0 for all i. The existence of such a set of 
ni has been proved in proposition 1 of [lo]. Nevertheless, the choice of ni is not unique. 
We add ai particles to site i for all i at the same time when the system is in configuration 
a. Then the resultant configuration after toppling equals (I if and only if (I is a recurrence 
state [9,11]. 

In the present case, we choose ni = 1 for all i, which is equivalent to adding a single 
particle to sites 1 and two particles to site 2N at tke same time. Since at most Aii particles 
are removed from site i whenever it is unstable each time, the possible local heights of odd 
(even) site when the system reaches its recurrence phase space are -1 and 0 (-3, -2, -1 
and 0). An odd (even) site is called ‘absorbing’ if and only if its local height equals -1 

for k > 3. Since det A@) = 6 and det A(4) = 20, we conclude that 
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(-2 or -3). Obviously, these are~sites which can ‘absorb’ the particles coming from their 
neighbours during toppling for exactly one time. 

Claim. Any system configuration with more than one absorbing site is not a recurrence 
Configuration. 

ProoJ Suppose a! has more than one absorbing site, and the left-most and right-most 
absorbing sites are denoted by 1 and r respectively (i.e. site i is not absorbing if i < 1 or 
i > r) .  Upon addition of a particle to site 1 and two particles to site 2N, it is easy to.verify 
that exactly one toppling will occur in sites 1,2, . . . ,1-2, I - 1, r + 1, r + 2, . . . ,2N. After 
that, the avalanche stops because both 1 and r ‘absorb’ the incoming particles and prevent 
further toppling. Since I < r (or else a! has only one absorbing site), the system does not 

0 

The remaining possible recurrence state configurations are those a! with at most one 

retum to a! after the avalanche. Thus a! 6 S2. 

absorbing site. The total number of such states, T, is given by 

where the first term is the total number of stable configurations without any absorbing site, 
the second (the Kid)  terms are the numbers of possible recurrence configurations with 
exactly one odd and no even (one even and no odd) absorbing site. Since T = det A, we 
conclude that stable configurations with at most one absorbing site are the only elements 
in the recurrence phase space Q. The above method of finding recurrence configurations is 
effective whenever the spatial dimension of the system is low. 

Having explicitly found out all the elements in Q, we can proceed to show that the 
system is indeed self-organized critical. We define the avalanche size s to be the total 
number of toppling Occurrences during an avalanche (i.e. sites with multiple toppling are 
counted multiple number of times). Direct calculation tells us that if we add a single particle 
to site i on a recurrence system configuration without any absorbing site, then 

i(2N + 1 - i )  

0 otherwise. 

if hi = 0 
s =  [ 

Similarly, if the particle is added to a recurrence configuration with an absorbing site at k ,  
then 

i f i = k o r h i c O  

s = (2N + 1 - i ) ( i  - k) if i > k and hi = 0 (56) l o  i(k - i) if i < k and hi = 0. 
So under a uniform particle addition and in the N + 00 limit, the distribution of avalanche 
size can be well approximated by 

otherwise, 

Thus if we Fourier transform D(s) ,  a l/f2 scaling in the avalanche size s is observed. 
Therefore this model is self-organized critical, although its scaling exponent is trivial. 
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To some extent, the above example does not completely demonstrate that a particle 
conservation law is not a necessary condition for the exhibition of self-organized criticality 
in cellular automaton models. If we rescale all the even-numbered sites by hy. -+ hu/2, 
then the toppling matrix becomes that of the one-dimensional Abelian sandpile model. In 
fact, this example is equivalent to the one-dimensional ASM which allows half-integral local 
heights for all the even-numbered sites. Besides, the even-numbered sites will receive 
only one half of a unit of particle each time when something is dropped onto them. The 
distribution of avalanche size D(x) can be calculated using the piecewise linear relationship 
found by Chau and Ho [12] and it turns out to be the same as those given by equations (5) 
and (6). 

3. Example 2 

We now provide another example on a one-dimensional superlattice, which is not equivalent 
to any ‘ordinary’ one-dimensional sandpile model, whose toppling rules are translational 
invariant at all sites except possibly at system boundaries, under local rescaling. More 
precisely, this model is not equivalent to any one-dimensional ASM whose toppling matrix 
is of Toeplitz form. Again, we apply the rules of the Abelian sandpile to a collection of 
2N sites labelled from 1 to 2N. The toppling rules are given by the following: (i) For any 
odd-numbered site 2i+l,  it will lose four particles in the next timestep. no of them are 
delivered to site 2i+3 and one of them to site 2i+4, while the remaining one is dissipated 
in the process. Thus, odd-numbered sites are dissipative. (ii) For any even-numbered site 
2i, it will lose two particles in the next timestep. Two of them are transported to site 2i-3, 
one of them to site 2i-2. Thus, even-numbered sites are creative. The toppling matrix of 
the system is given by 

4 0 -2 -1 
0 2  

4 0 -2 -1 
A-ACZN)=  -2 -1 0 2 

. . . . . . . . . . . .  I 
. ,  1 . . . . . . . . . . .  

Using an idea similar to that in example 1, it is easy to show that 

det A(2N) = ( N  + 1) 4N. 

1 
We use the same technique before to find all the (Nf 1)4N recurrence states of the system. 
In this case, we choose ni = 1 for all i, which is equivalent to adding four particles to sites 
1 and 2N - 1,  together with two particles to sites 2 and 2N all at the same time. Since 
at most Aii particles are removed from site i whenever it becomes unstable each time, the 
possible states an even (odd) site can be when the system reaches the recurrence phase 
space are -1 and 0 (-3, -2, -1 and 0). For any stable system configuration o( (hi) ,  we 
define 

if h l ,  h3 , .  .. .h2i-3 > -1 and hZ-, < -1 
(94 

N+1 if hi,  h3, .... > -1 
Umin = 
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i 

0 

if h p ; + p ,  h~i+4. . . . , huv = 0 and hzi = - 1  

if hp, hq. . . . , hzN = 0. 
(96) 

For the odd-numbered sites, exactly two particles are received per toppling in the particle 
flow into them; while for the even-numbered sites, only one particle is received per toppling. 
So odd-numbered sites with local height equals -3 or -2 (or even-numbered sites with local 
height equals -1) can ‘absorb’ the particles coming from their neighbours during toppling 
exactly once; while odd-numbered sites of local height - 1  or 0 (or even-numbered sites of 
local height 0) becomes unstable whenever particles flows into them during an avalanche. 
Thus 2umin - 1 is the minimum odd-numbered site (while 21- is the maximum even- 
numbered site) in our finite superlattice which can ‘absorb the stress’ whenever particles 
topple onto it for exactly once during an avalanche. 

Claim. 

ProoJ Consider a system configuration a! with ufin c 1,-. Upon addition of two 
particles to sites 1 and 2N - 1 and one particle to sites 2 and 2N,  it is easy to verify that 
exactly one toppling will occur in the following sites 1,2, . . . ,2umin-2, 2udn, 2Em- 1 ,  
21-+1,21,+2, . . . , 2 N .  After that, the avalanche stops because both sites 2umiD-1 and 
21- ‘absorb’ the incoming particles and prevent further toppling. Since umin < I“. sites 
such as 2 u ~ ~  - 1 and 21- will not topple during the avalanche and hence afterwards the 

n. 0 

Thus the remaining possible recurrence state configurations are those a! = (hi) with 
-3 < hzi-1 < 0 and - 1  < hzi < 0.for i = 1 , 2 , .  . . , N ,  and with umin 2 1,. The total 
number of such states, T, is given by 

Any system configuration with umio < 1, is not a recurrence state. 

system will not relax back to 01. Thus 01 

where the first term is the number of configurations with U- < N and 1- 2 1, the second 
is the number of configurations with Ima = 0, and the third is the number of configurations 
with umin = N + 1 .  After some computation, we find T = (N+1)4N = det A, and hence 
the set of all recurrence states of the system is 

n = {a! = (mi) : uzj-, f [-3, -2, - 1 ,  O), a*j E [-I, 01 

for i = 1,2, . . . , N and U-(@) 2 lkn(a!)]. (11) 
Now, we go on to show that the system is indeed self-organized critical. Unlike 

example 1, it is not easy to argue the distribution of avalanche size D(s)  owing to the 
complexity of the recurrence phase space Q. So we take the altemative approach by 
calculating the two-point correlation function Gij of the system, which is defined as the 
average number of toppling occurrences in site j given that a particle is introduced to site 
i, and is given by Gij = A;’ [2]. 

In the appendix, we show that 
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and 

* j ( N - i )  
4(N + 1) 
(i + 1)(N + 1 - j )  I 4(N + 1) 

G2i.2j-1 = 

(i - 1)(N+ 1 - j )  
2fN+1) 

j ( N  +2 - i) 
2(N + 1) 

(i - 1)(N + 1 - j )  
2(N + 1) 

Gz~-I .~J-~ = 

if i + l  > j 

otherwise 

i f i - l x  j 

otherwise 

i f i > j  

otherwise 

for i, j = 1.2, . . . , N. Obviously, the two-point correlation function G,j varies linearly 
with the distance between sites i and j .  Upon a uniform and random particle addition, 
l/f2 scaling is observed as N + 00 and the model is indeed self-organized critical @ut 
with a trivial exponent). 

This model is not equivalent to any ‘ordinary’ onedimensional ASM with toppling rules 
being translational invariant, except possibly at the boundary. Suppose the contrary, we can 
find a set of hyw = f i (h l , .  . . , hzN) such that the system becomes a one-dimensional ASM 
after applying these transformations. fi, however, is independent of hj for all j # i or 
else the toppling of site i must depend on the neighbouring sites, making the transformed 
system not an ASM. It is easy to check that any transformation fi = fi(h;) cannot reduce 
equation (7) to a Toeplitz form, and hence this model is not equivalent to any ‘ordinary’ 
one-dimensional ASM. 

4. Conclusions 

In summary, we have explicitly constructed examples of the simplest possible class of 
cellular automaton examples exhibiting self-organized criticality without the presence of 
a local particle conservation law: namely, Abelian sandpile models on one-dimensional 
superlattices. Moreover, a simple method of finding recurrence phase-space configurations, 
based on the idea of the burning algorithm, is introduced which is useful when the dimension 
of the system is low. 

A p p e n h  Finding A-’ 

We rearrange the site labels of the system using the map 

2i + i 
2i - 1 + N + i  I 

for i = 1,2, . . . , N, the toppling matrix A can be rewritten as 
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where BT denotes the transpose of B. Moreover, B and D are N x  N-matrices whose 
elements are given by 

xij  = . 

-1 i f j - i = 1  

otherwise 
B,- 

and 
2 i f i = j  

D . . -  -1 i f j -  j = ]  
'I - [ 

0 otherwise 

respectively. According to the block matrix inversion formula, 

1 0.5 X - 1  -0.5(DT)-'B Y-' 
Y-1 

A,& = 

' 2  i f f  = j = N 

-1 i f i - j = 1  

1.5 if i = j andi  i N 

if i z j and i < N - 0,5i-j+1 

0 otherwise. 

where X = DT - B D-'BT and Y = D --BT(DT)-'B. Since D is a Toeplitz matrix, D-' 
can be evaluated easily 1131 and is given by 

o.si-j+l i f i >  j 

lJ I 0 otherwise. 
DX' = 

We divide X into four block matrices by partitioning the sites into two sets, namely: 
[ 1,2,. . . , N - 1) and {N}. The only (N - 1) x (N - 1)-matrix so formed is in Toeplitz 
form whose inverse can readily be found [13]. After that, by means of the block matrix 
inversion formula again, we obtain 

j ( N  - i )  
2(N + 1) 
(i + 1)(N + 1 - j )  

i f i >  j 

otherwise. I 2(N + 1) 

x:' = 
$1 

Using the same method, we find that 
j ( N + 2 -  i )  

2(N + 1) 
(i - 1)(N + 1 - j )  

i f i ) j  

otherwise. 
7.0' + 1) 

Now D-'BTX-' and (DT)-' B Y-I can be evaluated using equations (As), (A7) and (AS). 
Thus all four block mafxices in equation (A4) are computed. Finally, equations (lkj(12d) 
are obtained by changing the labels of the sites back to the original ones. 
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